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Abstract
This paper considers the control landscape of quantum transitions in multi-
qubit systems driven by unitary transformations with single-qubit interaction
terms. The two-qubit case is fully analyzed to reveal the features of the
landscape including the nature of the absolute maximum and minimum,
the saddle points and the absence of traps. The results permit calculating
the Schmidt state starting from an arbitrary two-qubit state following the local
gradient flow. The analysis of multi-qubit systems is more challenging, but the
generalized Schmidt states may also be located by following the local gradient
flow. Finally, we show the relation between the generalized Schmidt states and
the entanglement measure based on the Bures distance.

PACS numbers: 03.67.Mn, 03.65.Ud, 02.30.Yy

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The topology of quantum control landscapes is important because it establishes the general
features of the control behavior generated by applying external fields [1, 2]. The landscape
for quantum transitions, assuming complete controllability, was analyzed with the conclusion
that there are no traps [3–6] that could hinder achieving the highest possible control outcome.
This paper studies the problem of describing the landscape of quantum transitions driven by
local unitary operators, i.e. those acting on one qubit at a time, for multi-qubit systems [7].

The Schmidt states, defined for pure bi-partite systems, are important because of the
insight they can provide about entanglement. The Schmidt states were generalized in
[8, 9], in order to treat multipartite systems. This paper will show how to obtain the canonical
form of the generalized Schmidt states by following the local gradient flow. This technique
ultimately leads to a method to measure the entanglement of pure systems based on the optimal
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implementation of local unitary operations as a subset of the more general classical operations
and classical communication protocols as was pursued with other methods [10, 11].

It is convenient to define the following bracket operation:

〈X〉0 = 1

2N
Tr[X + X†]. (1)

The comparative fidelity between two density matrices, when at least one of them is pure, is
〈ρ0ρT〉0. If one of the states is driven by a unitary operator, then the cost function can be
written as

F = 〈U †ρ0UρT〉0. (2)

This expression has the same form as the cost function for the optimization of the expectation
value of an observable O [5]:

J1 = 〈Uρ0U
†O〉0, (3)

which was the subject of prior landscape studies [2]. The fidelity function for the state transfer
can be rewritten as

F = 〈ρ0UρTU †〉0. (4)

An infinitesimal transformation of the unitary operator can be expressed as

U → U ′ = U eδA = U(1 + δA), (5)

with δA being an anti-Hermitian element that lies in the corresponding Lie algebra, so that an
infinitesimal variation of U becomes

δU = UδA, (6)

which can be used to calculate the first-order variation of the fidelity as

δF = 〈ρ0U [δA, ρT]U †〉0. (7)

A subsequent manipulation results in

δF = 〈[ρT, U †ρ0U ]δA〉0 = 〈[ρT, U †ρ0U ]U †δU 〉0, (8)

thereby identifying the gradient as

Grad1 = U [U †ρ0U, ρT], (9)

with the corresponding gradient flow equation

dU

ds
= U [U †ρ0U, ρT]. (10)

The fidelity can be expanded up to second order to obtain the quadratic form for the
Hessian:

δ2F = 〈{ρT, U †ρ0U}(δA)2〉0 − 2〈U †ρ0UδAρTδA〉0, (11)

where { , } stands for the anti-commutator. This quadratic form is simplified at the critical
points where the gradient (10) is zero:

δ2F |c = 2(〈ρTU †ρ0U(δA)2〉0 − 〈U †ρ0UδAρTδA〉0). (12)

The local gradient flow is found by eliminating multi-qubit terms in δA, such as σ3 ⊗ σ3,
and leaving single qubit terms, such as σ3⊗12×2 or 12×2⊗σ3. In this way, only strictly localized
interactions are involved as happens in classical mechanics. Defining P as the projector that
eliminates multi-qubit terms, the variation of the unitary operator with the corresponding local
flow is

δU = UPδA. (13)
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The projector P is easily calculated by tracing one-qubit terms. For example, the two-qubit
projector is

P = 1

4

3∑
j=1

Tr[·σ0 ⊗ σj ]σ0 ⊗ σj + Tr[·σj ⊗ σ0]σj ⊗ σ0, (14)

with σ0 = 12×2, so that PδA is constrained to the six-dimensional Lie algebra su(2)×su(2) ⊂
su(4). The first-order variation subject to the local flow becomes

δF = 〈[ρT, U †ρ0U ]PU †δU 〉0 = 〈P([ρT, U †ρ0U ])U †δU 〉0, (15)

which results in the following local gradient:

Gradlocal
1 = UP[U †ρ0U, ρT]. (16)

2. Two-qubit systems

The Schmidt states play an important role in the quantification of the entanglement of two-qubit
systems. We will show their importance in describing the quantum landscape characterized
by the local gradient flow and then calculate the Schmidt state of a given entangled state by
following the local gradient flow (excepting the maximally entangled state).

Consider the landscape where the target state is a Schmidt state denoted as ρT = ρS(θ).
The Schmidt states for two-qubit systems can be parametrized with a single variable as

|ψρS〉 = cos(θ/2)|↑↑〉 + sin(θ/2)|↓↓〉, (17)

whose corresponding density matrix reads as

ρS(θ) =

⎛
⎜⎜⎝

cos2(θ/2) 0 0 1
2 sin θ

0 0 0 0
0 0 0 0

1
2 sin θ 0 0 sin2(θ/2)

⎞
⎟⎟⎠ , (18)

with 0 � θ � π , in the standard basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}.
The critical states ρc = U

†
c ρ0Uc obey the following equation:

P[ρc, ρS(θ)] = 0. (19)

It can be shown that this equation is satisfied by critical states that fall into one of the following
two cases.

• Another Schmidt state ρc = ρS(φ). In this case, the eigenvalues of the Hessian around
the critical points are either negative or mixed, with the following explicit form:

h(θ, φ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
−1 − cos(θ − φ) − sin θ − sin φ

−1 − cos(θ − φ) − sin θ − sin φ

−4 sin θ sin φ

−1 − cos(θ − φ) + sin θ + sin φ

−1 − cos(θ − φ) + sin θ + sin φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

For each critical state with a negative spectrum h(θ0, φ0), there is another one with a
mixed spectrum h(θ0, π − φ0). Conversely, for each critical state with a mixed spectrum
h(θ0, φ0), there is another one with a negative spectrum h(θ0, π −φ0). So, for each initial
state there is a pair of critical states that can be reached by following the local gradient
flow, such that one of them is a saddle point and the other is a stable maximal point. If
the initial state is separable, the two possible critical states are given by ρS(0) or ρS(π).
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• The critical sub-manifold spanned by the basis {|↑↓〉, |↓↑〉} with the following explicit
form of the critical state

ρc = x|↓↑〉〈↓↑ | + (1 − x)|↑↓〉〈↑↓ |, (21)

where the eigenvalues of the Hessian are⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −
√

(1 − 2x)2 cos2 θ + sin2 θ

1 −
√

(1 − 2x)2 cos2 θ + sin2 θ

0

1 +
√

(1 − 2x)2 cos2 θ + sin2 θ

1 +
√

(1 − 2x)2 cos2 θ + sin2 θ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

which corresponds to a positive spectrum, associated with the minimum.

Based on the features of the critical points, we can state the following theorem.

Theorem 1. The fidelity landscape between a pure separable state ρ0 and a target Schmidt
state ρS(θ) (with θ 
= π/2) has saddle points but no traps. Moreover, the separable states
that maximize the fidelity converge to either |↑↑〉 or |↓↓〉 depending on the target state as they
follow the local gradient flow, according to the following formula:

lim
U→Uc

U †ρ0U =
{|↑↑〉〈↑↑ | 0 < θ < π/2
|↓↓〉〈↓↓ | π/2 < θ < π.

(23)

This theorem is a direct result of the fact that these limiting states are the only Schmidt states
with zero entanglement. Moreover, we can also say that

Corollary 1. For pure states, the maximum fidelity between an entangled state and a
separable state can be calculated from the corresponding Schmidt state |ψS〉 = cos(θ/2)|↑↑〉+
sin(θ/2)|↓↓〉 as

F(θ) = max F =
{

cos2(θ/2) θ � π/2
sin2(θ/2) π/2 < θ � π

. (24)

The maximum fidelityF(θ) can be used to calculate the Bures distance as the entanglement
measure, which satisfies all the features required for a good entanglement monotone [12, 13].
In the present case of pure two-qubit systems, the entanglement formula is

EB(ρ) = 2(1 −
√
F(θ). (25)

As a first example, figure 1 shows the fidelity of the states following the local gradient flow
for the initial separable state described by

ρ0 = e
i

4π
σ0⊗σ1 |↑↑〉〈↑↑ | e− i

4π
σ0⊗σ1 (26)

with ρS(π/4) as the target state and |↑↑〉 as the limiting state. The next example considers the
following entangled initial state:

ρ0 = e
i

π/4 σ2⊗σ0 e
7i

10π
σ2⊗σ2 |↑↑〉〈↑↑| e− 7i

10π
σ2⊗σ2 e− i

π/4 σ2⊗σ0 (27)

driven by the local unitary flow with ρS(π/4) as the target state, and the following limiting
Schmidt state:

lim
U→Uc

U †ρ0U =

⎛
⎜⎜⎝

0.793 893 0 0 0.404 508
0 0 0 0
0 0 0 0

0.404 508 0 0 0.206 107

⎞
⎟⎟⎠ . (28)
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Figure 1. Fidelity curve of the states following the local gradient flow for the initial separable state
(26) with ρS(π/4) as the target state. The fidelity never reaches 1 but attains the global maximum
associated with the limiting state |↑↑〉.
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Figure 2. Fidelity of a random entangled state moving toward its Schmidt state as a function of the
target Schmidt state ρS(θ) employed to drive the local gradient flow. The dashed line represents
the fidelity of the initial random state with respect to its Schmidt state and each subsequent curve
corresponds to another step in the approach by following the local gradient flow. The figure
suggests that the arbitrary state never reaches its corresponding Schmidt state when the gradient
employs the target states ρS(0), ρS(π/2) and ρS(π).

Almost any Schmidt state can be used as the target state in order to drive the local gradient
flow, excepting those with θ = {0, π/2, π}, because of convergence issues. For example,
figure 2 shows how the arbitrary state (27) approaches its Schmidt state for the range of target
Schmidt states.

The local gradient flow was driven by employing target Schmidt states, but the landscape
is invariant under the application of local unitary operations on both the initial and target states.
The local unitary transformations include local phases, which are able to change the phase
of the Schmidt states. This means that the general stable critical states are Schmidt states with
the possibility of extra phases. For example, consider the following arbitrary entangled state
made from a Schmidt state and local unitary transformations

ρE = e
iπ
4 σ2⊗σ0 e

iπ
4 σ0⊗σ1ρS(π/4) e− iπ

4 σ0⊗σ1 e− iπ
4 σ2⊗σ0 . (29)
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The initial separable state is taken as ρi = |↑↑〉〈↑↑|. The local gradient flow converges to a
separable unitary operator Uc with the following corresponding separable state:

ρc = U †
c ρiUc =

(
1/2 −1/2

−1/2 1/2

)
⊗

(
1/2 −i/2
i/2 1/2

)
. (30)

This state can be diagonalized by the following local unitary operator:

T =
(

1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
⊗

(
i/

√
2 i/

√
2

−1/
√

2 1/
√

2

)
, (31)

such that T †ρcT = |↑↑〉〈↑↑ |. This suggests that T could be used to reduce ρE to its expected
Schmidt state ρS(π/4), but instead we obtain a Schmidt state with an extra phase −i

T †ρET =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos2
(π

8

)
0 0 −i cos

(π

8

)
sin

(π

8

)
0 0 0 0

0 0 0 0

i cos
(π

8

)
sin

(π

8

)
0 0 sin2

(π

8

)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (32)

This extra phase can be eliminated by the use of local phase transformations, which otherwise
leave the absolute value of the components of the density matrix invariant.

3. Three or more qubit systems

The entanglement in a two-qubit system can be minimally characterized by a single variable
as shown in the Schmidt state. The number of variables needed to parametrize an n-qubit
system is 2n+1 − 2 up to a global phase, and the number of variables to parametrize a single
qubit is 3n; thus, the minimum number of variables needed to parametrize the entanglement
of an n-qubit system is

NE = 2n+1 − 2 − 3n, (33)

which is five for three-qubit systems. The canonical form of the generalized Schmidt states
is important because of the information that can be obtained about entanglement [14–16]. A
canonical form of the generalized Schmidt state for three qubits was introduced in [8] as

|ψS〉 = λ1| ↑↑↑〉 + λ2 eiφ| ↑↓↓〉 + λ3| ↓↑↓〉 + λ4| ↓↓↑〉 + λ5| ↓↓↓〉, (34)

with λi � 0, φ � 0 and
∑ |λi |2 = 1. The canonical form of the generalized Schmidt state for

n-qubit systems was given in [9] indicating that the missing basis elements in the generalized
Schmidt state are

|↓↑↑ · · · ↑〉, |↑↓↑ · · · ↑〉, |↑↑↓ · · · ↑〉, · · · |↑↑↑ · · · ↓〉. (35)

The landscape of multi-qubit systems is richer and more complex than the two-qubit case.
Considering the case where the initial state is separable and following the reasoning in [9], we
can always demand that λ1 � λk . However, the analysis is simpler if we relax some generality
and demand that λ1 > λk , for k > 1. The variation of the fidelity can be written as

δF = δ〈
|ψS〉〈ψS|
〉 = 2 Re[〈
|ψS〉〈ψS|δ|
〉] (36)

The canonical form in (34) indicates that if we start with a generic separable state
|
〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉 and allow local unitary transformations, the isolated maximum
fidelity is achieved at the critical state |
c〉 = |↑↑↑〉. The first-order variation under local

6
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unitary transformations is made of a linear combination of basis elements with at most one
qubit reversed:

δ|↑↑↑〉 = (1 + iδ1)|↑↑↑〉 + δ2|↓↑↑〉 + δ3|↑↓↑〉 + δ5|↑↑↓〉, (37)

with δ1 ∈ R, δ2 ∈ C, δ3 ∈ C, δ5 ∈ C. We can use this variation in order to evaluate δF

given by (36) at the critical state |
c〉 and verify that it is a stationary point, thus justifying
the canonical form of the generalized Schmidt state. The missing basis elements (35) form
a critical sub-manifold associated with the fidelity minimum of zero value. The generic
identification of the remaining critical states is difficult and depends on the specific λj values.
However, if λj > 0, then there are no additional critical states because the aforementioned
critical states exhaust all the possibilities of obtaining δF = 0.

As a concrete example, consider calculating the generalized Schmidt state of the following
arbitrary state:

|ψT〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3 + 0.1i
0.2
0.3
0.3
0.4
0.2
0.5√

1 − 0.77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

Following the same procedure used in the two-qubit case, we use the local gradient flow to
calculate the optimized separable state |ψc〉 that maximizes the fidelity |〈ψT|ψc〉|2, starting
from an initial separable state (e.g. | ↑↑↑〉). The optimized state |ψc〉 can be diagonalized
using a local unitary transformation. Applying the same local unitary transformation to the
target state |ψT〉〈ψT|, we obtain

|ψ̂S〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.986 657
0
0

−0.125 609 − 0.024 5643i
0

0.015 1643 − 0.031 2796i
0.070 3562 + 0.047 7398i

−0.013 8602 + 0.038 7071i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

which is almost in the canonical form (34). The first component can always be put in real
form by choosing a suitable global phase. The remaining procedure is to employ the three
available local phase transformations in order to eliminate the phase of last three components
to finally obtain

|ψS〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.986 657
0
0

−0.125 09 − 0.024 5643i
0

0.034 7616
0.085 024

0.041 1138

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (40)
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which we ascertain to be the global maximum because |λ1| is greater than the rest of
the components. The local phase transformations do not change the absolute value of
the components of the column spinor, so, it is easy to verify that, for example, in the last
component | − 0.013 8602 + 0.038 7071i| = 0.041 1138.

The procedure to calculate the Schmidt state can be used to calculate the Bures distance
as an entanglement measure if |λ1| is greater than the rest of the components. In this case, the
formula of the Bures distance as a measure of entanglement is simply

EB(ρ) = 2(1 − |λ1|). (41)

The study of higher multi-qubit states follows along the same general lines of the three-qubit
state. Thus, we are able to calculate the generalized Schmidt state as well as the Bures distance
as a measure of entanglement for most of the cases where λ1 results in a value greater than the
rest of the components.

4. Conclusions

The landscape of local quantum transitions for two-qubit systems is well suited for optimization
through the gradient flow because of the lack of traps. We showed how to extend these results
to multi-qubit systems and presented an example on how to calculate the generalized Schmidt
state for three qubits. The local gradient flow can be easily applied to higher multi-qubit
systems and even though we could not give a complete analysis of the landscape, a criterion
was presented to establish if the global maximum was attained. A generalization of this
analysis to mixed multi-qubits is desirable, but this is a much more challenging problem
because of the severe limitations that unitary transformations present.
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